
www.avispa-project.org

IST-2001-39252

Automated Validation of Internet Security Protocols and Applications

Deliverable D2.3: The Intermediate Format

Abstract
This deliverable introduces the Intermediate Format (IF), a tool-independent
protocol specification language suitable for automated deduction. Specifica-
tions of security protocols and properties written in the High-Level Protocol
Specification Language (HLPSL) are automatically translated in IF specifica-
tions, which are then given as input to the different back-ends that constitute
the AVISPA tool for protocol analysis.

Deliverable details

Deliverable version: v1.0 Person-months required: 16

Date of delivery: 31.08.2003 Due on: 31.08.2003

Classification: public Total pages: 28

Project details

Start date: January 1st, 2003

Duration: 30 months

Project Coordinator: Alessandro Armando

Partners: Università di Genova, INRIA Lorraine, ETH Zürich, Siemens AG

Project funded by the European Community under the

Information Society Technologies Programme (1998-2002)

D2.3. The Intermediate Format 1

1 Introduction

1.1 Architecture

This deliverable introduces the Intermediate Format (IF), a tool-independent
protocol specification language suitable for automated deduction. As shown
in Figure 1, which displays the architecture of the AVISPA tool, the HLPSL2IF
translator automatically translates a HLPSL protocol specification provided
by the user into an IF specification, which is then given as input to the differ-
ent back-ends of the AVISPA tool. Hence, the main goal in the design of the
IF was to provide a low-level description of the protocol that is suitable for
automatic analysis (rather than being abstract and easy to read for human
users like the HLPSL), and yet this format should be independent from the
analysis methods employed by the various back-ends.

Translator

IF2OFMC

Translator

HLPSL2IF

Translator

IF2CL

On−the−fly Model−Checker
OFMC

CL−based Theorem−Prover
CL

SAT−based Model−Checker
SATMC

High−Level Protocol Specification Language (HLPSL)

Intermediate Format (IF)

Translator

IF2SATMC

Figure 1: Architecture of the AVISPA tool

This document thus provides a basis for understanding the back-ends
that work on the IF. It also provides a kind of “reference manual”, i.e. the
documentation for developers who plan to connect their own protocol analysis
tools with the AVISPA tool by means of the IF.

1.2 Semantics

The IF describes a protocol in terms of rewrite rules describing an infinite-
state transition system with an initial state, transition rules, and a state-
based safety property, namely a goal (attack) predicate that defines if a

AVISPA IST-2001-39252

D2.3. The Intermediate Format 2

given state is an attack state or not.1 In Section 4 below, we give a formal
semantics that reflects this interpretation of the IF.

Note that the translation performed by the HLPSL2IF translator defines
a semantics for the HLPSL in terms of the IF, which provides an alternative
to the semantics of the HLPSL based on TLA (see Deliverable 2.1 [6]).

1.3 Novel Features

This document provides a complete description of the Intermediate For-
mat IF. We defined a preliminary version of the IF as part of the AVISS
project (“AVISS: Automated Verification of Infinite State Systems”, FET-
Open Project IST-2000-26410 [2, 7]). Since then, in order to be able to
analyze the Internet security protocols and applications that we will con-
sider in the AVISPA project, we have completely redesigned the language,
as we illustrate below.

The most important new concept is the extension of the left-hand side
of rules with conditions and negative facts, in order to allow for the explicit
modeling of a wider class of protocols and properties in a natural way.

Note that the back-ends OFMC and CL [9, 10, 11, 15, 16, 17] are both
based on the lazy intruder, a technique to symbolically represent the intruder-
generated messages, which itself is based on unification [21, 12, 1, 22, 20, 19].
The use of negation in the context of unification is usually highly problematic;
however, in Section 4.5, we show that this is not the case for our approach,
as we have successfully managed to extend the lazy intruder to the extended
language we defined. It is also worth pointing out that for the SATMC back-
end [3, 4, 5], which is based on a declarative encoding into propositional logic,
the introduction of negation does not require any change.

The introduction of negation also requires us to extend the intruder
model. In the previous version of the IF, as is standard in protocol anal-
ysis, the intruder did not have the ability to generate fresh data himself.
Since without negation the honest agents could not check that messages are
different (i.e. they perform only equality checks), the intruder could always
send the same messages again (as is done in approaches based on data in-
dependence, such as [24]). With inequalities allowed in rules, we must in
general allow the intruder to generate an unbounded number of new mes-
sages. It turns out that this can be immediately handled by the back-ends
based on the lazy intruder, without any additional cost (as shown below);
SATMC, which is not based on the lazy intruder, can also easily handle, and
profit from, the integration of such a rule by introducing additional constant

1An attack trace is a path that leads from the initial state to an attack state.

AVISPA IST-2001-39252

D2.3. The Intermediate Format 3

symbols (further details will be given in later deliverables, describing the
different approaches and back-ends.)

We expect that, in order to analyze more complex protocols than the ones
that we are currently considering according to the work-plan, we will need to
further extend the IF. However, we also expect that most of these extensions
will be straightforward. For example, integrating a new cryptographic op-
erator requires only introducing a new symbol, new intruder rules, and new
equations on this operator, while the rest of the IF syntax and semantics
remains unchanged.

To make the IF flexible for such extensions, we use a prelude file that
defines all protocol-independent aspects of the model, such as algebraic equa-
tions. The prelude file is shared between the HLPSL and the IF. The anal-
ysis tools that work on the IF may be specialized to the prelude file, in the
sense that their method is based on this particular intruder model, and that
changes to the prelude file would also require changes to the tools.

1.4 The HLPSL2IF Translator

The HLPSL2IF translator automatically translates a specification in HLPSL
into an IF specification. The translator works as follows. First, it parses the
HLPSL specification, checking that a number of conditions are met (e.g. that
all used variables are declared). Then, it flattens the hierarchical structure
of the role descriptions in HLPSL and translates them into step rules of
the IF, describing the transitions honest agents can perform. (The intruder
behavior is protocol-independent and specified as part of the prelude file.)
The initial state of the IF is computed from the instantiation given in the
HLPSL file (declaring which agents are to play which roles of the protocol
with whom). Finally, the goals are computed as a state-based encoding of
the properties given in the HLPSL file. A more detailed description of the
translation process will be given as part of a later deliverable describing the
AVISPA tool.

1.5 Organization

We proceed as follows. In Section 2, we give the syntax of the IF in BNF
and explain the main features. In Section 3, we describe the prelude file. In
Section 4, we describe the semantics of the IF as a transition system and
a set of goal states; we also discuss the different kinds of infinity inherent
in this format and the relation between negation and the lazy intruder. In
Section 5, we illustrate the use of the IF, and in particular its novel features,
by considering the example of the well-known Needham-Schroeder Public

AVISPA IST-2001-39252

D2.3. The Intermediate Format 4

Key Protocol (NSPK, [18, 23]), as well as variants of the protocol that could
not be described in the previous versions of the IF. These examples are the
IF translations of the respective HLPSL examples of Deliverable 2.1 [6].

2 The Syntax of the IF

We first give the entire BNF (with the usual conventions), and then give
explanations and examples. The symbol for comments is %. The grammar
has two start symbols, Prelude and IFFile, since the prelude file essentially
has the same syntax as IF, but contains a different set of sections.

Prelude ::= TypeSymbolsSection

SignatureSection

TypesSection

EquationsSection

IntruderSection

IFFile ::= SignatureSection

TypesSection

InitsSection

RulesSection

GoalsSection

TypeSymbolsSection ::= "section typeSymbols:" TypeList

SignatureSection ::= "section signature:" SignatureSection0

TypesSection ::= "section types:" TypeDeclaration*

EquationsSection ::= "section equations:" Equation*

InitsSection ::= "section inits:" ("initial_state"

Identifier ":=" State)+

RulesSection ::= "section rules:" RulesDeclaration*

GoalsSection ::= "section goals:" GoalDeclaration*

IntruderSection ::= "section intruder:" RulesDeclaration*

RulesDeclaration ::= "step" Identifier "(" VariableList ")"

":=" CNState ExistsVar? "=>" State

State ::= Fact ("." Fact)*

CNState ::= NState ConditionList

ConditionList ::= ("&" Condition)*

Condition ::= "equal(" Term "," Term ")"

| "leq(" Term "," Term ")"

AVISPA IST-2001-39252

D2.3. The Intermediate Format 5

| "not(" Condition ")"

NState ::= NFact ("." Nfact)*

NFact ::= Fact | "not(" Fact ")"

Fact ::= IF_Fact "(" TermList ")"

ExistsVar ::= "=[exists" VariableList "]"

GoalDeclaration ::= "goal" Identifier "(" VariableList ")"

":=" CNState

Equation ::= Term "=" Term

Term ::= AtomicTerm

| ComposedTerm

AtomicTerm ::= Constant

| Variable

ComposedTerm ::= IF_Operator "(" TermList ")"

Constant ::= [a-z] [a-zA-Z0-9_]* | [0-9]+

Variable ::= [A-Z_] [a-zA-Z0-9_]*

Identifier ::= Constant

TypeDeclaration ::= AtomicTermList ":" Type

Type ::= IF_Type

| IF_Operator "(" TypeList ")"

| "{" ConstantList "}"

SignatureSection0 ::= SuperTypeDeclaration*

| FunctionDeclaration*

| PredicateDeclaration*

TypeStar ::= Type

| Type "*" TypeStar

SuperTypeDeclaration ::= IF_Type ">" IF_Type

FunctionDeclaration ::= IF_Operator ":" TypeStar "->" Type

PredicateDeclaration ::= IF_Operator ":" TypeStar "->" Type

VariableList ::= Variable ("," Variable)*

TermList ::= Term ("," Term)*

TypeList ::= Type ("," Type)*

AtomicTermList ::= AtomicTerm ("," AtomicTerm)*

IF_Fact ::= "state_" Identifier | Identifier

AVISPA IST-2001-39252

D2.3. The Intermediate Format 6

IF_Operator ::= Identifier

IF_Type ::= Identifier

The IF specification of a protocol describes an infinite-state transition
system by an initial state, a transition relation, and a set of goal (i.e. attack)
states. Every state is a set of facts (e.g. the fact that the intruder knows
a particular message), while the transition relation is given by conditional
rewrite rules on sets. The prelude is a fixed file that contains all declarations
that are protocol-independent, while each IF-file contains only declarations
for a particular protocol.

2.1 Structure of an IF File

An IF file (and, similarly, a prelude file) consists of a sequence of sections.

Section Type Symbols (TypeSymbolsSection). In this section, all basic
(message) types (like nonce) are declared.

In the sections signature (SignatureSection) and types (TypesSection),
the types of variables, constants, function symbols and fact symbols are de-
clared.

Section Signature (SignatureSection). This section contains declara-
tions of the used function and fact symbols, and, more specifically,
their types. Also it contains subtype declarations. This section is not
necessary to define the semantics of the IF (the arity of the function
and fact symbols is implicit when they are used consistently), but the
type information can be helpful for some back-ends. Almost all the
information in this section is protocol independent (and hence part of
the prelude, not of the concrete IF file), however there is one exception:
the signature of a state-fact describing the state of an honest agent is
protocol-dependent.

Section Types (TypesSection). In this section, the types for all constants
and variables can be specified. This implies that throughout an IF file
an identifier cannot be used with two different types (while the scope
of each variable is limited to the rule it appears in). Note that one may
leave unspecified the type of some or all identifiers in order to obtain
an untyped model.

Section Equations (EquationsSection). In this section, algebraic prop-
erties of the function symbols are specified.

AVISPA IST-2001-39252

D2.3. The Intermediate Format 7

The sections inits (InitsSection), rules (RulesSection), and intruder
(IntruderSection) describe a transition system, and section goals
(GoalsSection) describes a goal (or attack) predicate on states.

Section Inits (InitsSection). In this section, we specify one or more ini-
tial states of the protocol, and thus consider several parallel runs of the
protocol. Deliverable D3.3 on session instances will illustrate how this
section can be generated automatically by the HLPSL2IF translator.

Section Rules (RulesSection). In this section, we specify the transition
rules of the honest agents executing the protocol. Note that, with
respect to previous versions of the IF, we have extended the rules with
conditions and negative facts, which are discussed in Section 2.3 below.

For the declaration of rules, we also use the following syntactic sugar.
We assume that the iknows fact (iknows(M) means that the intruder
knows the message M) is persistent, in the sense that if an iknows fact
holds in a state, then it holds in all successor states (i.e. the intruder
never forgets messages). Therefore, if an iknows fact appears in the
left-hand side (LHS) of a rule, it should also be contained in the rule’s
right-hand side (RHS). To simplify the rules, however, we do not write
the iknows facts that already appeared in the LHS. In other words, in
our rules iknows is implicitly persistent, and we interpret the rules as
if every LHS iknows also appears in the RHS.

Also, a rule can be labeled with a list of existentially quantified vari-
ables. Their purpose is to introduce new constants like fresh nonces.
Note that in the previous version of the IF we instead used a method
of creating unique terms; this is, of course, still possible, but the new
specification language does no longer prescribe a particular method to
create new constants.

Section Goals (GoalsSection). The goals are defined in terms of predi-
cates on states and are conceptually not different from the LHS of rules
(and we will define their semantics similarly); consequently, we allow
also conditions and negative facts in the goals.

Section Intruder (IntruderSection). The rules in this section describe
the abilities of the intruder, namely composition and decomposition
of messages he knows (according to the standard Dolev-Yao intruder
extended with the ability to exploit the specified algebraic properties
of operators). As these abilities are again independent of the protocol,
they are included in the prelude.2

2In the future, we will also allow for the specification of different intruder models,

AVISPA IST-2001-39252

D2.3. The Intermediate Format 8

2.2 Context-sensitive Properties

All used identifiers must be different from the IF keywords (step, section,
intruder, equal, leq, not, state). The identifiers for types (IF Type) used
in declarations can only be those identifiers that have been introduced as
type identifiers in the prelude. Identifiers for operators (IF Operator) are
only those that have been declared in the signature section of the prelude
as having range type message. Similarly, fact symbols (IF Fact) are only
the ones declared in the signature section of the prelude or the IF file as
having range type fact. The identifiers that name initial states, rules, or goals
must be unique and distinct from all constants and variables and declared
identifiers.

For a rule declaration, the variables in the variable list must contain
exactly those variables that occur in the LHS of the rule and in the existential
quantification. The variables of the RHS must be a subset of the variables in
the positive facts of the LHS (excluding those variables that occur only in the
conditions or the negative facts of the rule) and the existentially quantified
variables. Analogous restrictions apply for initial states. More precisely,
variables cannot occur in an initial state as it can be seen as the RHS of a
rewrite rule that can be applied only once with an empty LHS.

2.3 Negation

We have extended the standard rewriting approach to consider rules that
contain also negative facts and conditions. The conditions are conjunctions of
equalities and inequalities on terms. Note that the truth value of a condition
depends only on the substitution for the variables of the contained terms,
while the truth value for positive and negative facts depends also on the
current state (hence the conceptual distinction between facts and conditions).

The conditions can also contain comparisons between natural numbers,
which are necessary for instance for protocols where agents loop according
to a counter, but again their truth value depends only on the substitution
for the variables of the contained terms and not on the current state.

2.4 Shared Variables and Sets

The analysis of security protocols and properties often requires us to model
that an agent can remember a set of objects shared over all protocol sessions
he participates in, e.g. the set of known public-key certificates of other agents,

e.g. for Over-the-Air protocols where the intruder is not able to intercept messages but
can only insert and eavesdrop messages.

AVISPA IST-2001-39252

D2.3. The Intermediate Format 9

or the set of nonces the agent has seen. This can be readily modelled in the IF.
For example, if keyset a denotes the set of key certificates known to agent a,
then the situation in which keyset a contains a message pair(b, kb) can be
represented by a state containing the fact contains(keyset a, pair(b, kb)).
This allows us to easily check if a certain element is or is not contained in a
set, as well as to add and to remove elements from a set. In Section 5.3, we
describe how such a set can be used to give a precise model of the Needham-
Schroeder public-key protocol with key-server, where the agents ask the key-
server for a key iff they do not know it yet.

2.5 Algebraic Equations

The introduction of algebraic equations is a subtle task as they affect both
the unification algorithms and the abilities of the intruder to generate and
analyze messages. Currently, we focus on the following operators and equa-
tions:

• Pairing is associative.

• Exponentiation (used for instance in Diffie-Hellman and RSA) com-
mutes in the exponents, and inverse exponents cancel each other out.

• Bitwise XOR has the property of being associative, commutative, and
self-inverse.

We will introduce further operators and/or equations if required by the pro-
tocols to be analyzed.

3 Prelude File

Here we give the entire prelude that we are currently using:

% PRELUDE AVISPA IF

section typeSymbols:

agent, nonce, symmetric_key, public_key, function, set, table,

nat, message, fact

section signature:

message > agent

AVISPA IST-2001-39252

D2.3. The Intermediate Format 10

message > nonce

message > symmetric_key

message > public_key

message > function

message > set

message > table

pair : message * message -> message

crypt : message * message -> message

inv : message -> message

scrypt : message * message -> message

exp : message * message -> message

xor : message * message -> message

apply : message * message -> message

iknows : message -> fact

contains : message * message -> fact

witness : agent * agent * message * message -> fact

request : agent * agent * message * message -> fact

secret : message * message -> fact

section types:

K,M,M1,M2,M3 : message

section equations:

pair(M1,pair(M2,M3)) = pair(pair(M1,M2),M3)

inv(inv(M)) = M

exp(exp(M1,M2),M3) = exp(exp(M1,M3),M2)

exp(exp(M1,M2),inv(M2)) = M1

xor(M1,xor(M2,M3)) = xor(xor(M1,M2),M3)

xor(M1,M2) = xor(M2,M1)

xor(xor(M1,M1),M2) = M2

section intruder:

AVISPA IST-2001-39252

D2.3. The Intermediate Format 11

% generate rules

step gen_pair (M1,M2) :=

iknows(M1).iknows(M2) => iknows(pair(M1,M2))

step gen_crypt (M1,M2) :=

iknows(M1).iknows(M2) => iknows(crypt(M1,M2))

step gen_scrypt (M1,M2) :=

iknows(M1).iknows(M2) => iknows(scrypt(M1,M2))

step gen_exp (M1,M2) :=

iknows(M1).iknows(M2) => iknows(exp(M1,M2))

step gen_xor (M1,M2) :=

iknows(M1).iknows(M2) => iknows(xor(M1,M2))

step gen_apply (M1,M2) :=

iknows(M1).iknows(M2) => iknows(apply(M1,M2))

% analysis rules

step ana_pair (M1,M2) :=

iknows(pair(M1,M2)) => iknows(M1).iknows(M2)

step ana_crypt (M1,M2) :=

iknows(crypt(K,M)).iknows(inv(K)) => iknows(M)

step ana_scrypt (M1,M2) :=

iknows(scrypt(K,M)).iknows(K) => iknows(M)

% Generating new constants of any type:

step generate (M) :=

=[exists M]=> iknows(M)

4 The Semantics of the IF

In this section, we formally describe the semantics of the IF. Recall that, as
we remarked above, the translation performed by the HLPSL2IF translator
defines a semantics for the HLPSL in terms of the IF, which provides an
alternative to the semantics of HLPSL based on TLA; see Deliverable 2.1 [6].

The basis of the semantics are terms, which are built from the constants
and function symbols of the prelude and the IF files. To smoothly integrate
the existential quantifier, we assume a set of fresh constants that is disjoint
from all constants in the prelude and if file. For these constants, we assume a
function fresh that maps a state and a set of variables to a substitution that

AVISPA IST-2001-39252

D2.3. The Intermediate Format 12

replaces the variables with constants that do not appear in the given state.

4.1 Types

Let type be a partial function from AtomicTerm to Type (see the grammar
in Section 2) that yields for every constant and variable the respective type
that has been declared, if any.

Note that our syntax allows also composed types, e.g.

M : scrypt(symmetric key, pair(nonce, agent)) .

Such a variable declaration is used when the receiver is not supposed to
analyze a certain message-part according to the protocol. For instance, in
the case of the Otway-Rees protocol, A should send to B a message M that
is encrypted with a key KAS that is shared between A and a trusted server S.
B has to forward this message M to S and cannot read it himself. Hence an
intruder, impersonating A, can send any message in the place of M since B
will not try to analyze it. For a typed model, however, we want B to accept
M only if it is of the proper format (according to the protocol), i.e. if it is
an encryption with a symmetric key and the contents after decryption are
also of the proper format. In other words, even though B cannot decrypt
the message, we assume that he can check whether the received message is
of the correct type and reject it if not.

Semantically, let op be an n-ary IF Operator, M a variable and t1, . . . , tn
types (atomic or themselves composed). Then the declaration

M : op(t1, ..., tn)

is equivalent to the declarations

M1 : t1, . . . , Mn : tn

if Mi (with i = 1, . . . , n) are fresh variables (that do not appear in the
IF file) and every occurrence of M in the IF file is replaced with the term
op(M1, . . . , Mn).

One may hence see composed types as syntactic sugar, but they allow us
to write the rules for an IF file independent of the question of typing.

4.2 Unification

We define unification on IF terms in the standard way, only that types and
algebraic properties have to be respected.3 Formally, the algebraic equations

3Unless the lazy intruder or other symbolic techniques are employed, all states are
ground terms and hence we employ a special case of unification, matching, i.e. unification

AVISPA IST-2001-39252

D2.3. The Intermediate Format 13

induce an equivalence relation ≡ on the term algebra, and a unifier of two
terms is a substitution, such that (i) the substituted terms are equivalent
with respect to ≡, and (ii) the type of every substituted variable agrees with
the type of the term it is replaced with. (In an untyped model, the types are
not declared and hence do not constrain the unification.) As we adopt the
standard notion of sorted unification, we will not go into further details here
but refer the reader to [8].

Besides for the properties we have already discussed in Section 2.5, we
also use the “.” as an associative, commutative, and idempotent operator,
i.e. we have:

t1.(t2.t3) = (t1.t2).t3
t1.t2 = t2.t1
t.t = t

Note, however, that these three properties cannot be specified as part of the
equation section, as these properties work on facts rather than on messages.
With these properties, the operator “.” works as a set constructor for facts,
and in the following we will consequently talk about sets, union, and set
difference for facts as a shorthand.

4.3 Rule Application

For a substitution σ, we define σ |= Cond on conditions as expected:

σ |= t1 = t2 iff t1σ = t2σ (where t1 and t2 are arbitrary terms)
σ |= t1 ≤ t2 iff t1σ ≤ t2σ (where t1 and t2 are natural numbers)
σ |= φ ∧ ψ iff σ |= φ and σ |= ψ (where φ and ψ are conditions)
σ |= ¬φ iff not σ |= φ (where φ is a condition)

We define when a rule is applicable to a (ground) state by the function
matches that takes as argument the LHS of the rule lhs and yields a function
that maps a state s to the set of substitutions σ such that lhsσ can be applied
to s (this set is empty if the rule is not applicable). Note that the RHS of the
rule can only contain variables from the positive facts of the LHS and the
existentially quantified variables (which will be replaced by fresh constants
below), therefore all substitutions that result from matches are ground and
so are all successor states.

A LHS of a rule contains a set of positive and negative facts as well as
a set of conditions, i.e. a set of equalities and inequalities as follows: the
IF condition equal(t1, t2) represents equality of the terms t1 and t2, not

represents negation of a condition, and ≤ (t1, t2) represents t1 ≤ t2. For the

of two terms one of which is ground.

AVISPA IST-2001-39252

D2.3. The Intermediate Format 14

LHS lhs of a rule, we define the functions PF (lhs) for the positive facts of
the lhs , NF (lhs) for the negative facts, PC (lhs) for the positive conditions
(i.e. without not), and NC (lhs) for the negative conditions.4

matches : Rule LHS → (State → 2Substitution)

matches lhs s = {σ | ground(σ)

∧ dom(σ) = vars(PF (lhs)) ∪ vars(PC (lhs))

∧PF (lhs)σ ⊆ s ∧ σ |= PC (lhs)

∧ (∀ρ. dom(ρ) = (vars(NF (lhs)) ∪ vars(NC (lhs))) \ dom(σ)

∧NF (lhs)σρ ∩ s = ∅ ∧ σρ |= NC (lhs))}

The intuition behind this definition is as follows: we consider every substi-
tution σ such that under σ the positive facts can be unified with a subset
of the current state (hence PF (lhs)σ is necessarily ground) and the positive
conditions are satisfied. Furthermore, for all ground substitutions ρ for the
remaining variables, i.e. those variables that appear only in negative facts
and in negative conditions, we postulate that none of the negative facts un-
der σρ is contained in the state and none of the conditions is satisfied for σρ.
Note also that matches is applied in the same way for goal states (which are
syntactically the same as a rule’s LHS).

To define the semantics of a rule as a state-transition function, we use
the applicability check matches; besides for this check, the conditions and
the negative facts of the rule do not play any role: the transition itself is
concerned only with the positive facts of the LHS of the rule, the existentially
quantified variables, and the RHS.

[[·]] : Rule → (State → 2State)

[[(lhs , exVar , rhs)]](s) = {s′ | ∃σ, ρ. σ ∈ matches lhs s

∧ ρ = fresh(s, exVar)

∧ s′ = (s \ (PF (lhs)σ)) ∪ (rhs ρσ)}

Note that here the semantics of a rule is defined as a state-transition
function operating only on ground terms, i.e. s may not contain variables
(otherwise the definition of the transition relation may not behave as one
would expect); the resulting s′ is then also ground, as the rules cannot intro-
duce any new variables. However, one key feature of the IF is the support for
symbolic methods, in particular the narrowing-style lazy intruder technique,
which is hard to combine with any form of negation; in Section 4.5, we show

4Note that 2S denotes the power-set of a set S.

AVISPA IST-2001-39252

D2.3. The Intermediate Format 15

that the form of IF rules we have defined here is indeed compatible with our
lazy intruder approach.

The rest of the semantics is straightforward: we have one or more ground
initial states and a transition relation; this defines an infinite-state transition
system. A protocol, described by an IF file, is secure iff there are no reachable
state s and goal g such that matches g s holds. We will refer to the transition
system defined in this section as the ground model.

4.4 Kinds of Infinity in the Model

The transition system we have defined is, in general, infinite, where the
following distinct kinds of infinity can occur:

• The transition system is by default untyped, so the complexity of mes-
sages that can occur is unbounded, and this implies that there are
infinitely many different possible messages that can occur (and they
are for instance stored in an agent state-fact).

• The number of steps that an honest agent can perform to execute a
run of the protocol can be unbounded (e.g. loops that the agent can
repeat an unbounded number of times).

• The number of parallel sessions that the agents can execute may be
unbounded; although the initial state is a finite set of ground terms,
there can be rules that create new state-facts that correspond to new
sessions of agents in their initial states.

• The number of agents may be unbounded.

It is possible to obtain a finite-state transition system by bounding all of
these parameters of the model. Moreover, using the lazy intruder technique
allows us to decide the security question even without the first restriction on
the complexity of messages [25].

4.5 Negation and the Lazy Intruder

We now illustrate how we can extend the lazy intruder approach with explicit
negation (for a full account, see [9]; see also [1], which is, besides for ours, the
only other lazy intruder approach that can handle a form of negation). The
basic idea is to reduce the problem to what we already have (symbolic states
and constraints) plus a conjunction/disjunction of inequalities on message
terms. In this section, we assume for simplicity that the term algebra is free,

AVISPA IST-2001-39252

D2.3. The Intermediate Format 16

so that there is a most general unifier for every unification problem (i.e. all
other unifiers are instances of the most general one).

The equivalent of the matches function of the ground model is now com-
puted on a symbolic state s and a rule lhs ⇒ rhs as follows:

1. Find a unifier for s and PF (lhs). Without algebraic equations, there
is always a most general unifier. If there is no unifier, then the rule is
not applicable, else we apply the unifier to the state, the constraints
and the rule.

2. For every equation t = t′ ∈ PC (lhs), try to unify t and t′. If this is
not possible, then the rule is not applicable, else we apply the unifier
to the state, the constraints and the rule.

3. Every negative fact not(f) ∈ NF (lhs) induces a set of unifiers for f
and some fact of the state. This set is empty if there is no fact that
can be unified with the current state, and it contains the identity if f
is directly contained in the current state.

For every unifier, we specify the negation of the unifier as a disjunction
of inequalities:

¬[x1 7→ t1, . . . , xn 7→ tn] =
n∨

i=1

xi 6= ti .

In the special case of the identity, we have n = 0 and hence the result
is the neutral element of the disjunction, i.e. false.

4. As the rules contain only conjunctions of conditions, we now have a
conjunction of disjunctions of inequalities. Note that we do not allow
arbitrary boolean formulae of inequalities here.

5. The inequalities are handled in a straightforward way: every substi-
tution that arises during the search is also applied to the inequalities.
Also, we check if an inequality is a tautology or if it is unsatisfiable, and
replace it with true or false, respectively. Straightforward rules reduce
the boolean formula to eliminate conjunction or disjunction with true
or false.

In [9], we have shown that a set of inequalities, which is reduced according
to the last step of the above procedure, conjoined with a simple constraint
set of the lazy intruder is always satisfiable: a variable on the LHS of a simple
lazy intruder constraint set expresses the fact that in place of this variable
the intruder may use any message he can generate, where the only difference

AVISPA IST-2001-39252

D2.3. The Intermediate Format 17

with respect to the “normal” approach is that with the lazy intruder the
inequalities additionally demand that these messages are different. This re-
flects that in such a model with negation the intruder must be able to create
an unbounded number of different messages. He can do this if he knows
at least one message (e.g. his own name): he can create new messages for
instance by concatenation of known ones.

We can see here that, with the introduction of negation, we need the
intruder to be able to create new messages at any point. This feature comes
for free with the lazy intruder approach: inequalities on variables, i.e. mes-
sages where it does not matter (yet) which value the intruder chooses, do not
require further exploration.

The conditions in the IF rules that impose comparisons between natural
numbers will be treated similarly, i.e. as additional constraints in the sym-
bolic approach, where we check in every state that at least one solution for
the constraints exists. Although the satisfiability problem is harder when
allowing comparisons on natural numbers, it is still decidable [13, 14].

5 Example: the Needham-Schroeder Public-

Key Protocol (NSPK)

As a concrete example, we give IF files for a number of variants of the well-
known Needham-Schroeder Public Key Protocol (NSPK) [18, 23].

5.1 “Standard” NSPK

The first variant that we consider is the usual variant with the three-message
exchange between Alice and Bob.

section signature:

state_Alice : nat * agent * agent * public_key * public_key

* nonce * nonce * nat -> fact

state_Bob : nat * agent * agent * public_key * public_key

* nonce * nonce * nat -> fact

section types:

A,B,a,b,i: agent

KA,KB,ka,kb,ki: public_key

0,1,2,3: nat

AVISPA IST-2001-39252

D2.3. The Intermediate Format 18

SID: nat

NA,NB,na,nb,ni: nonce

section inits:

initial_state init1 :=

iknows(i).

% session 1 [A:a, B:b, KA:ka, KB:kb]

state_Alice(0,a,b,ka,kb,ni,ni,1).

state_Bob(0,b,a,kb,ka,ni,ni,2).

iknows(a).iknows(b).iknows(ka).iknows(kb).

% session 2 [A:a, B:i, KA:ka, KB:ki]

state_Alice(0,a,b,ka,ki,ni,ni,3).

iknows(ki).iknows(inv(ki))

section rules:

step step0 (A,B,KA,KB,NA,SID) :=

state_Alice(0,A,B,KA,KB,ni,ni,SID)

=[exists NA]=>

state_Alice(1,A,B,KA,KB,NA,ni,SID).

iknows(crypt(KB,pair(NA,A))).

secret(NA,B).

witness(A,B,na,NA)

step step1 (A,B,KA,KB,NA,NB,SID) :=

state_Alice(1,A,B,KA,KB,NA,ni,SID).

iknows(crypt(KA,pair(NA,NB)))

=>

state_Alice(2,A,B,KA,KB,NA,NB,SID).

iknows(crypt(KB,NB))

step step2 (A,B,KA,KB,NA,NB,SID) :=

state_Bob(0,B,A,KB,KA,ni,ni,SID).

iknows(crypt(KB,pair(NA,A)))

=[exists NB]=>

state_Bob(1,B,A,KB,KA,NA,NB,SID).

iknows(crypt(KA,pair(NA,NB))).

secret(NB,A).

witness(B,A,nb,NB)

AVISPA IST-2001-39252

D2.3. The Intermediate Format 19

step step3 (A,B,KA,KB,NA,NB,SID) :=

state_Bob(1,B,A,KB,KA,NA,NB,SID).

iknows(crypt(KB,NB))

=>

state_Bob(2,B,A,KB,KA,NA,NB,SID)

section goals:

% weak authentication

goal authenticate_A_B_NB (A,B,KA,KB,NA,NB,SID) :=

state_Alice(2,A,B,KA,KB,NA,NB,SID).

not(witness(B,A,nb,NB))

& not(equal(B,i))

% replay

goal authenticate_A_B_NB_r (A,B,KA,KB,NA,NA2,NB,SID,SID2) :=

state_Alice(2,A,B,KA,KB,NA,NB,SID).

state_Alice(2,A,B,KA,KB,NA2,NB,SID2).

& not(equal(B,i)) & not(equal(SID,SID2))

% weak authentication

goal authenticate_B_A_NA (A,B,KA,KB,NA,NB,SID) :=

state_Bob(2,B,A,KB,KA,NA,NB,SID).

not(witness(A,B,na,NA))

& not(equal(A,i))

% replay

goal authenticate_B_A_NA_r (A,B,KA,KB,NA,NB,NB2,SID,SID2) :=

state_Bob(2,B,A,KB,KA,NA,NB,SID).

state_Bob(2,B,A,KB,KA,NA,NB2,SID2).

& not(equal(A,i)) & not(equal(SID,SID2))

goal secrecy (M,A) :=

secret(M,A).iknows(M) & not(equal(A,i))

In this specification, we used two fact symbols, state Alice and state Bob

for representing the local state of an honest agent in role Alice or Bob, re-
spectively. The format of such state terms is protocol-dependent (therefore
it is explicitly declared in the signature section): they allow us to represent
all information relevant for participating in one session of NSPK in role Al-
ice or Bob, namely the step number of the last executed protocol step, the

AVISPA IST-2001-39252

D2.3. The Intermediate Format 20

names of the involved agents, their public keys, their nonces, and a session
identifier. This identifier is necessary to allow for several parallel sessions
between the same agents, as it is similarly necessary in the case of HLPSL.
Initially, the slots for the two nonces are filled with the dummy value ni

(standing for “nonce of intruder”), which expresses that no nonce has been
created or received yet.

The rules incorporate an optimization that we call step-compression, and
which is employed by all the three back-ends of the AVISPA tool [3, 4, 5, 9,
10, 11, 15, 16, 17]. Step-compression is based on the idea (followed also in
other approaches such as [1, 12, 19, 22]) that we can identify the intruder
and the network: every message sent by an honest agent is received by the
intruder and every message received by an honest agent comes from the
intruder. Formally, we compose (or “compress”) several steps: when the
intruder sends a message, an agent reacts to it according to his rules, and
the intruder diverts immediately the agent’s answer. A bisimulation proof [9]
shows that the model with such composed actions (which we present here)
is “attack-equivalent” to the model with single (uncompressed) transitions
(i.e. we end up in an attack state using composed transitions iff that was the
case using uncomposed transitions).

The facts witness and secret are used to encode information necessary
to keep track of the goal states (which represent a violation of the security
properties): witness(a, b, na, 17) means that the agent a has generated the
nonce of value 17 as nonce identifier na for communication with b. The value
secret(17, a) means that some honest agent has created the value 17 for the
communication with an agent a (so the intruder may not find out 17). This
is specified by the secrecy goal: the intruder may not find out M if M is a
secret that was generated by an honest agent for an agent A, unless A is the
intruder.

The authenticate goals are much more subtle to express: for weak authen-
tication, we need the fact that an agent has finished his part of the protocol,
believing the received nonce really comes from the agent it appears to come
from, while there is no witness fact that supports this belief. Again, the
exception is that the other agent is the intruder acting under his real name.
For strong (non-injective) authentication, we additionally need the fact that
it is not a replay of the same messages, i.e. no agent may be made accept a
second time the same nonce as coming from another agent, unless the other
agent is the intruder.

AVISPA IST-2001-39252

D2.3. The Intermediate Format 21

5.2 NSPK with replay-protection

We now show how a variant of the NSPK can be expressed, where agents
store all the nonces they have seen (generated or received from others) so
that they will not accept any of these nonces as fresh from the other agents
in future protocol runs.

The only changes are in the rules for agents generating nonces (and storing
them) as well as receiving a supposed-to-be-fresh nonce (checking it is not
yet stored and storing it).

section signature:

state_Alice : nat * agent * agent * public_key * public_key

* nonce * nonce * set * nat -> fact

state_Bob : nat * agent * agent * public_key * public_key

* nonce * nonce * set * nat -> fact

section types:

A,B,a,b,i: agent

KA,KB,ka,kb,ki: public_key

0,1,2,3: nat

SID: nat

Noncestore,noncestore_a,noncestore_b: set

NA,NB,na,nb,ni: nonce

section inits:

initial_state init1 :=

iknows(i).

% session 1 [A:a, B:b, KA:ka, KB:kb]

state_Alice(0,a,b,ka,kb,ni,ni,noncestore_a,1).

state_Bob(0,b,a,kb,ka,ni,ni,noncestore_b,2).

iknows(a).iknows(b).iknows(ka).iknows(kb).

% session 2 [A:a, B:i, KA:ka, KB:ki]

state_Alice(0,a,b,ka,ki,ni,ni,noncestore_a,3).

iknows(ki).iknows(inv(ki))

section rules:

step step0 (A,B,KA,KB,NA,Noncestore,SID) :=

state_Alice(0,A,B,KA,KB,ni,ni,Noncestore,SID)

=[exists NA]=>

AVISPA IST-2001-39252

D2.3. The Intermediate Format 22

state_Alice(1,A,B,KA,KB,NA,ni,Noncestore,SID).

iknows(crypt(KB,pair(NA,A))).

secret(NA,B).

witness(A,B,na,NA).

contains(NA,Noncestore)

step step1 (A,B,KA,KB,NA,NB,Noncestore,SID) :=

state_Alice(1,A,B,KA,KB,NA,ni,Noncestore,SID).

iknows(crypt(KA,pair(NA,NB))).

not(contains(NB,Noncestore))

=>

state_Alice(2,A,B,KA,KB,NA,NB,Noncestore,SID).

iknows(crypt(KB,NB)).

contains(NB,Noncestore)

step step2 (A,B,KA,KB,NA,NB,Noncestore,SID) :=

state_Bob(0,B,A,KB,KA,ni,ni,Noncestore,SID).

iknows(crypt(KB,pair(NA,A))).

not(contains(NA,Noncestore))

=[exists NB]=>

state_Bob(1,B,A,KB,KA,NA,NB,Noncestore,SID).

iknows(crypt(KA,pair(NA,NB))).

secret(NB,A).

witness(B,A,nb,NB).

contains(NA,Noncestore).

contains(NB,Noncestore)

5.3 NSPK with key-server

We model the server as a “persistent” agent, whose state-fact never changes
and that uniformly reacts to every incoming key-request with the appropriate
certificate if there is such a certificate in his database.

The key-table the server possesses is modeled by a finite set of pairs of
agents and their public keys. Alternatively, we could use a function to this
end, which would simplify matters when the number of agents is not bounded.

section signature:

state_Alice : nat * agent * agent * public_key * public_key

* nonce * nonce * set * nat -> fact

state_Bob : nat * agent * agent * public_key * public_key

AVISPA IST-2001-39252

D2.3. The Intermediate Format 23

* nonce * nonce * set * nat -> fact

section types:

A,B,a,b,i: agent

KA,KB,KS,ka,kb,ki,ks: public_key

0,1,2,3: nat

SID: nat

Keyset,keyset_a,keyset_b,keyset_s: set

NA,NB,na,nb,ni: nonce

section inits:

initial_state init1 :=

iknows(i).

% session 1 [A:a, B:b]

state_Alice(0,a,b,ka,ks,ni,ni,keyset_a,1).

state_Bob(0,b,a,kb,ks,ni,ni,keyset_b,2).

iknows(a).iknows(b).

% session 2 [A:a, B:i]

state_Alice(0,a,b,ka,ks,ni,ni,keyset_a,3).

iknows(ki).iknows(inv(ki)).

% whatever the agents happen to know initially

% depending on instance, let’s say

contains(pair(i,ki),keyset_a).

% initial server keyset={(a,ka),(b,kb),(i,ki)}

state_Server(s,keyset_s).

contains(pair(a,ka),keyset_s).

contains(pair(b,kb),keyset_s).

contains(pair(i,ki),keyset_s)

section rules:

step step0_0 (A,B,KA,KB,KS,Keyset,SID) :=

state_Alice(0,A,B,KA,KS,ni,ni,Keyset,SID).

not(contains(pair(B,KB),Keyset))

=>

state_Alice(1,A,B,KA,KS,ni,ni,Keyset,SID).

iknows(pair(A,B))

step step0_1 (A,B,KA,KB,KS,NA,Keyset,SID) :=

AVISPA IST-2001-39252

D2.3. The Intermediate Format 24

state_Alice(0,A,B,KA,KS,ni,ni,Keyset,SID).

contains(pair(B,KB),Keyset)

=[exists NA]=>

state_Alice(2,A,B,KA,KS,NA,ni,Keyset,SID).

contains(pair(B,KB),Keyset)

iknows(crypt(KB,pair(NA,A))).

secret(NA,B).

witness(A,B,na,NA)

step step1 (A,B,KA,KB,KS,NA,Keyset,SID) :=

state_Alice(1,A,B,KA,KS,ni,ni,Keyset,SID).

iknows(crypt(inv(KS),pair(B,KB)))

=[exists NA]=>

contains(pair(B,KB),Keyset).

state_Alice(2,A,B,KA,KS,NA,ni,Keyset,SID).

iknows(crypt(KB,pair(NA,A))).

secret(NA,B).

witness(A,B,na,NA)

step step2 (A,B,KA,KB,KS,NA,NB,Keyset,SID) :=

state_Alice(2,A,B,KA,KS,NA,ni,Keyset,SID).

iknows(crypt(KA,pair(NA,NB))).

contains(pair(B,KB),Keyset)

=>

state_Alice(3,A,B,KA,KS,NA,NB,Keyset,SID).

iknows(crypt(KB,NB)).

contains(pair(B,KB),Keyset)

% <similar rules for role bob>

step server (A,B,KB) :=

iknows(pair(A,B)).

state_Server(s,keyset_s).

contains(pair(B,KB),keyset_s)

=>

state_Server(s,keyset_s).

iknows(crypt(inv(ks),pair(B,KB)))

AVISPA IST-2001-39252

D2.3. The Intermediate Format 25

6 Conclusion

The IF is a low-level, simple but expressive language for specifying security
protocols and their properties. IF specifications can be generated automati-
cally by the HLPSL2IF translator from specifications written in the high-level
language HLPSL [6]. The first version of IF was developed during the AVISS
project and this new version is a complete re-design of the language, based
on the experience the project partners have made with a variety of proto-
col analysis problems, in order to be able to analyze the Internet security
protocols and applications that we will consider in the AVISPA project,

AVISPA IST-2001-39252

D2.3. The Intermediate Format 26

References

[1] R. Amadio and D. Lugiez. On the reachability problem in cryptographic
protocols. In C. Palamidessi, editor, Proceedings of Concur’00, LNCS
1877, pages 380–394. Springer-Verlag, 2002.

[2] A. Armando, D. Basin, M. Bouallagui, Y. Chevalier, L. Compagna,
S. Mödersheim, M. Rusinowitch, M. Turuani, L. Viganò, and L. Vi-
gneron. The AVISS Security Protocol Analysis Tool. In Proc. CAV’02,
LNCS 2404. Springer, 2002.

[3] A. Armando and L. Compagna. Automatic SAT-Compilation of Proto-
col Insecurity Problems via Reduction to Planning. In Proceedings of
FORTE 2002, LNCS 2529, pages 210–225. Springer-Verlag, 2002.

[4] A. Armando and L. Compagna. Abstraction-driven SAT-based Analysis
of Security Protocols. In Proceedings of SAT 2003, LNCS 2919. Springer-
Verlag, 2003. Available at www.avispa-project.org.

[5] A. Armando, L. Compagna, and P. Ganty. SAT-based Model-Checking
of Security Protocols using Planning Graph Analysis. In Proceedings of
FME’2003, LNCS 2805. Springer-Verlag, 2003.

[6] AVISPA. Deliverable 2.1: The High-Level Protocol Specification Lan-
guage. Available at http://www.avispa-project.org, 2003.

[7] AVISS. Deliverable 1.3: Final project report. For more information on
the AVISS project see http://www.avispa-project.org/theproject.
html, 2002.

[8] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998.

[9] D. Basin, S. Mödersheim, and L. Viganò. An On-The-Fly Model-
Checker for Security Protocol Analysis. In E. Snekkenes and D. Goll-
mann, editors, Proceedings of ESORICS’03, LNCS 2808, pages 253–270.
Springer-Verlag, 2003. Available at http://www.avispa-project.org.

[10] D. Basin, S. Mödersheim, and L. Viganò. Constraint Differentiation:
A New Reduction Technique for Constraint-Based Analysis of Security
Protocols. In V. Atluri and P. Liu, editors, Proceedings of CCS’03, pages
335–344. ACM Press, 2003. Available at http://www.avispa-project.
org.

AVISPA IST-2001-39252

D2.3. The Intermediate Format 27

[11] D. Basin, S. Mödersheim, and L. Viganò. Constraint Differentiation:
A New Reduction Technique for Constraint-Based Analysis of Security
Protocols (Extended Abstract). In Proceedings of SPV’03. Available
at www.loria.fr/~rusi/spv.html, 2003. Available at http://www.

avispa-project.org.

[12] M. Boreale. Symbolic trace analysis of cryptographic protocols. In
Proceedings of ICALP’01, LNCS 2076, pages 667–681. Springer-Verlag,
2001.

[13] J. Büchi. Weak second-order arithmetic and finite automata. Zentralblatt
der mathematischen Logik und Grundlagen der Mathematik, 6:66–92,
1960.

[14] J. Büchi. On a decision method in restricted second order arithmetic.
In Proc. 1960 Int. Congr. on Logic, Methodology and Philosophy, pages
1–11. Stanford University Press, 1962.

[15] Y. Chevalier and L. Vigneron. A Tool for Lazy Verification of Security
Protocols. In Proceedings of ASE’01. IEEE Computer Society Press,
2001.

[16] Y. Chevalier and L. Vigneron. Towards Efficient Automated Verifica-
tion of Security Protocols. In Proceedings of the Verification Workshop
(VERIFY’01) (in connection with IJCAR’01), Università degli studi di
Siena, TR DII 08/01, pages 19–33, 2001.

[17] Y. Chevalier and L. Vigneron. Automated Unbounded Verification of
Security Protocols. In E. Brinksma and K. G. Larsen, editors, Proceed-
ings of CAV’02, LNCS 2404, pages 324–337. Springer-Verlag, 2002.

[18] J. Clark and J. Jacob. A Survey of Authentication Protocol Literature:
Version 1.0, 17. Nov. 1997. URL: www.cs.york.ac.uk/~jac/papers/
drareview.ps.gz.

[19] R. Corin and S. Etalle. An Improved Constraint-Based System for the
Verification of Security Protocols. In Proceedings of SAS 2002, LNCS
2477, pages 326–341. Springer-Verlag, 2002.

[20] M. Fiore and M. Abadi. Computing Symbolic Models for Verifying
Cryptographic Protocols. In Proceedings of CSFW’01. IEEE Computer
Society Press, 2001.

AVISPA IST-2001-39252

D2.3. The Intermediate Format 28

[21] A. Huima. Efficient infinite-state analysis of security protocols. In Pro-
ceedings of the FLOC’99 Workshop on Formal Methods and Security
Protocols (FMSP’99), 1999.

[22] J. K. Millen and V. Shmatikov. Constraint solving for bounded-process
cryptographic protocol analysis. In Proceedings of the ACM Conference
on Computer and Communications Security CCS’01, pages 166–175,
2001.

[23] R. M. Needham and M. D. Schroeder. Using Encryption for Authen-
tication in Large Networks of Computers. Technical Report CSL-78-4,
Xerox Palo Alto Research Center, Palo Alto, CA, USA, 1978. Reprinted
June 1982.

[24] A. Roscoe and P. Broadfoot. Proving security protocols with model
checkers by data independence techniques. Journal of Computer Secu-
rity, 7:147–190, 1999.

[25] M. Rusinowitch and M. Turuani. Protocol Insecurity with Finite Num-
ber of Sessions is NP-complete. In Proceedings of CSFW’01. IEEE Com-
puter Society Press, 2001. Available at http://www.avispa-project.
org.

AVISPA IST-2001-39252

