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Abstract. Recently automated deduction tools have proved to be very
effective for detecting attacks on cryptographic protocols. These anal-
ysis can be improved, for finding more subtle weaknesses, by a more
accurate modelling of operators employed by protocols. Several works
have shown how to handle a single algebraic operator (associated with
a fixed intruder theory) or how to combine several operators satisfying
disjoint theories. However several interesting equational theories, such
as exponentiation with an abelian group law for exponents remain out
of the scope of these techniques. This has motivated us to introduce a
new notion of hierarchical combination for intruder theories and to show
decidability results for the deduction problem in these theories. Under
a simple hypothesis, we were able to simplify this deduction problem.
This simplification is then applied to prove the decidability of constraint
systems w.r.t. an intruder relying on exponentiation theory.

1 Introduction

Recently many procedures have been proposed to decide insecurity of crypto-
graphic protocols in the Dolev-Yao model w.r.t. a finite number of protocol
sessions [1, 4, 24, 22]. Among the different approaches the symbolic ones [22, 9,
3] are based on reducing the problem to constraint solving in a term algebra.
While these approaches rely on a perfect encryption hypothesis, the design of
some protocols (see e.g. [26]) rely on lower-level primitives such as exponentia-
tion or bitwise exclusive or (xor). These specification may give rise to new attacks
exploiting the underlying algebraic structure when it is not abstracted as perfect
encryption. For attacks exploiting the bitwise xor equational properties in the
context of mobile communications see for instance [5].

Hence several protocol decision procedures have been designed for handling
equational properties [21, 11, 6, 18] of the cryptographic primitives. A very fruit-
ful concept in this area is the notion of locality introduced by McAllester [19]
which applies to several intruder theories [12, 18]. When an intruder theory is
local then we can restrict every intruder deduction to contain only subterms of
its inputs, i.e. its hypotheses and its goal and this may lead to decidability of
intruder constraints. Here we extend this approach to a case where the signature
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can be divided into two disjoint sets and where the term algebra can be divided
into two types of terms, say 0 and 1 type, according to their root symbol. Then
we give sufficient conditions so that we can restrict intruder deductions to de-
ductions where all subterms of type 1 that occur in the deduction are subterms
of the inputs (i.e. some initially given terms and the goal term). Our goal is
to bound the deductions of terms of type 1 by the intruder, thus permitting
subsequent analysis to focus deductions of terms of type 0.

This approach allows us to decide interesting intruder theories presented as
non-disjoint combination of theories, and that were not considered before, by
reducing them to simpler theories. For instance it allows one to combine the
Abelian group theory of [23] with a theory of an exponential operator.

Related works. In [8] we have extended the combination algorithm for
solving E-unification problems of [2] to solve intruder constraints on disjoint
signatures. Here we show that we can handle some non-disjoint combinations.
In [13] Delaune and Jacquemard consider theories presented by rewrite systems
where the right-hand side of every rule is a ground term or a variable. Comon
and Treinen [12, 10] have also investigated general conditions on theories for
deciding insecurity with passive intruders.

As an application, we have obtained a decidable intruder theory combining
Abelian group and exponential which has less restrictions than any previous one:
unlike [7] it permits the intruder to multiply terms outside exponents, which is
natural with the Diffie-Hellman protocol where the prime decomposition of the
module is public. The setting is also less restrictive than in [25] where bases of
exponentials have to be constants and exponential terms must not appear inside
exponents.

Outline. In Section 2 we will first recall basic notions about terms, substitu-
tions, term rewriting and define a new notion of mode. We then derive a notion
of subterm value from the mode, and study properties of term replacement op-
erations. We recall the definition of intruder systems in Section 3, and define the
notion of well-moded intruders. We also prove the existence of special sequences
of deductions called quasi well-formed derivations. Then we define constraint
systems in Section 4. In Section 5 we define for a constraint system C a special
kind of substitutions called bound substitutions. We prove that whenever a con-
straint system C is satisfiable it is also satisfied by a bound substitution. We also
prove that these solutions do not increase the number of subterms of C of type
1, i.e. after instanciating C with a bound solution, the number of subterms of
type 1 in the result is lesser or equal. We then give in Section 6 an application
of these results to an interesting class of security protocols.

2 Terms, subterms and modes

2.1 Basic notions

We consider an infinite set of free constants C and an infinite set of variables
X . For all signatures G (i.e. sets of function symbols not in C with arities), we



denote by T(G) (resp. T(G,X )) the set of terms over G∪C (resp. G∪C∪X ). The
former is called the set of ground terms over G, while the latter is simply called
the set of terms over G. The arity of a function symbol f is denoted by ar(f).
Variables are denoted by x, y, terms are denoted by s, t, u, v, and finite sets of
terms are written E,F, ..., and decorations thereof, respectively. We abbreviate
E ∪ F by E,F , the union E ∪ {t} by E, t and E \ {t} by E \ t.

Given a signature G, a constant is either a free constant or a function symbol
of arity 0 in G. We define the set of atoms A to be the union of X and the set
of constants. Given a term t we denote by Var(t) the set of variables occurring
in t and by Cons(t) the set of constants occurring in t. We denote by Atoms(t)
the set Var(t) ∪ Cons(t). A substitution σ is an involutive mapping from X to
T(G,X ) such that Supp(σ) = {x|σ(x) 6= x}, the support of σ, is a finite set. The
application of a substitution σ to a term t (resp. a set of terms E) is denoted tσ
(resp. Eσ) and is equal to the term t (resp. E) where all variables x have been
replaced by the term σ(x). A substitution σ is ground w.r.t. G if the image of
Supp(σ) is included in T(G).

An equational presentation H = (G, A) is defined by a set A of equations
u = v with u, v ∈ T(G,X ) and u, v without free constants. For any equational
presentation H the relation =H denotes the equational theory generated by
(G, A) on T(G,X ), that is the smallest congruence containing all instances of
axioms of A. Abusively we shall not distinguish between an equational presenta-
tion H over a signature G and a set A of equations presenting it and we denote
both by H. We will also often refer to H as an equational theory (meaning the
equational theory presented by H).

The syntactic subterms of a term t are denoted Subsyn(t) and are defined
recursively as follows. If t is a variable or a constant then Subsyn(t) = {t}. If
t = f(t1, . . . , tn) then Subsyn(t) = {t}∪

⋃n
i=1 Subsyn(ti). The positions in a term

t are sequences of integers defined recursively as follows, ε being the empty se-
quence. The term t is at position ε in t. We also say that ε is the root position.
We write p ≤ q to denote that the position p is a prefix of position q. If u is a
syntactic subterm of t at position p and if u = f(u1, . . . , un) then ui is at posi-
tion p · i in t for i ∈ {1, . . . , n}. We write t|p the subterm of t at position p. We
denote t(s1, . . . , sm) a term that admits s1 . . . sm among its syntactic subterms.
We write t[s] to denote a term t where s is a syntactic subterm of t.

In this paper, we will consider two disjoint signatures F0 and F1, an equa-
tional theory E0 (resp. E1) on F0 (resp. F0 ∪ F1). We denote by F the union
of the signatures F0 and F1 and by E the union of the theories E0 and E1. We
assume that E is consistent (i.e. two free constants are not equal modulo E). A
term t in T(F0,X ) (resp.T(F1,X )) is called a pure 0-term (resp. pure 1-term ).
We denote by top(·) the function that associates to each term t its root symbol.
We also partition the set of variables X into two infinite sets X0 and X1.

2.2 Congruences and ordered rewriting

In this subsection we shall introduce the notion of ordered rewriting [14] which
has been useful (e.g. [2]) for proving the correctness of combination of unification



algorithms. Let < be a simplification ordering on T(G) 1 assumed to be total
on T(G) and such that the minimum for < is a constant cmin ∈ C and non-free
constants are smaller than any non-constant ground term.

Given a signature G, we denote by CspeG the set containing the constants in G
and cmin. For the the signature F = F0∪F1 defined earlier, we abbreviate CspeF
by Cspe. Given a possibly infinite set of equations O on the signature T(G) we
define the ordered rewriting relation →O by s →O s′ iff there exists a position
p in s, an equation l = r in O and a substitution τ such that s = s[p ← lτ ],
s′ = s[p← rτ ], and lτ > rτ . It has been shown (see [16, 14]) that by applying the
unfailing completion procedure to a set of equations H we can derive a (possibly
infinite) set of equations O, called o-completion of H and such that, first, the
congruence relations =O and =H are equal on T(F); and second, the ordered
rewrite relation →O is convergent (i.e. terminating and confluent) on T(F).

From now on when we will say “the rewrite system →O” this will mean “the
ordered rewrite relation→O”, when will say “by convergence of O”, we will mean
“by convergence of →O on ground terms”. By convergence of O we can define
(t)↓O as the unique normal form of the ground term t for →O. A ground term
t is in normal form, or normalized, if t = (t)↓O. Given a ground substitution
σ we denote by (σ)↓O the substitution with the same support such that for all
variables x ∈ Supp(σ) we have x(σ)↓O = ((xσ)↓O). A substitution σ is normal if
σ = (σ)↓O. In the following we will denote by R an o-completion of E = E1 ∪E2.

2.3 Modes

When one considers the union of two equational theories over two disjoint signa-
tures, a standard processing is to decompose the terms according to the signature
of their inner symbols into a set of equations whose members are pure terms (i.e.
built with symbols from a single signature). The rational for this decomposition
is that by construction, in the case of disjoint signatures, the rewrite system
obtained by o-completion is the union of two independent rewrite systems, each
one operating on pure terms. This decomposition cannot be applied as is in the
case of non-disjoint signatures. We provide here a notion of mode that allows
one (under some hypothesis) to decompose terms in subterm values such that
that the left-hand sides of rules in the o-completion never overlap two terms in
the decomposition of a term. This notion of mode is different from the standard
notion of type that would define how terms can be built.

In the following we assume that there exists a mode function m(·, ·) such
that m(f, i) is defined for every symbol f ∈ F and every integer i such that
1 ≤ i ≤ ar(f). For all f, i we have m(f, i) ∈ {0, 1} and for all f ∈ F0 and for all
i, m(f, i) = 0.

For all f ∈ F∪X we define a function that gives the class sig(f) of a symbol:

sig : F ∪ X → {0, 1, 2}

sig(f) =
{

i if f ∈ Fi ∪ Xi for i ∈ {0, 1}
2 otherwise, i.e. when f is a free constant

1 by definition < satisfies for all s, t, u ∈ T(G) s ≤ t[s] and s < u implies t[s] < t[u]



The function sig is extended to terms by taking sig(t)= sig(top(t)).
A position different from ε in a term t is well-moded if it can be written

p · i (where p is a position and i a nonnegative integer) such that sig(t|p·i) =
m(top(t|p), i). In other words the position in a term is well-moded if the subterm
at that position is of the expected type w.r.t. the function symbol immediately
above it. A term is well-moded if all its non root positions are well-moded. If a
non root position of t is not well-moded we say it is ill-moded in t. An equational
presentation H = (G, A) is well-moded if for all equations u = v in A the terms
u and v are well-moded and sig(u)=sig(v). One can prove that if an equational
theory is well-moded then its completion is also well-moded.

We call a subterm value of a term t a syntactic subterm of t that is either
atomic or occurs at an ill-moded position of t2. We denote Sub(t) the set of sub-
term values of t. By extension, for a set of terms E, the set Sub(E) is defined as
the union of the subterm values of the elements of E. The subset of the maximal
and strict subterm values of a term t plays an important role in the sequel. We
call these subterm values the factors of t, and denote this set Factors(t).

Example 1. Consider two binary symbols f and g with sig(f) = sig(g) =
m(f, 1) = m(g, 1) = 1 and m(f, 2) = m(g, 2) = 0, and t = f(f(g(a, b), f(c, c)), d).
Its subterm values are a, b, f(c, c), c, d, and its factors are a, b, f(c, c) and d.

In the rest of this paper and unless otherwise indicated, the notion of subterm
will refer to subterm values. From now on we assume that E is a well-moded
equational presentation, and thus that R is a well-moded rewrite system. Under
this assumption, one can prove that rewriting never overlaps subterm values.

2.4 Normalisation and replacement

Subterms and normalisation We now study the evolution of the subterms
of a term t when t is being normalized. Assuming the theory is well-moded, we
can prove that (ordered) rewriting by R preserves factors in normal form. Since
R is convergent, this permits to prove the following lemma.

Lemma 1. Let t be a term with all its factors in normal form. Then either (t)↓ ∈
Factors(t) ∪ Cspe or sig((t)↓) = sig(t). Moreover Sub((t)↓) ⊆ (Sub(t))↓ ∪ Cspe.

Replacement and normalization We now give conditions under which the
replacement of a normal subterm s of a term t commutes with the normalisation
of t. First let us define replacement with respect to the subterm value relation on
terms. If Π is a set of non-comparable positions in term t we denote by t[Π ← v]
the term obtained by putting v at all positions of t that are in Π. We denote δu,v

the replacement of u by v such that if u appears at positions Πu as a subterm
(i.e. as a subterm value) of t then tδu,v = t[Πu ← v]. We denote in short δu the
replacement δu,cmin .

2 Note that the root position of a term is always ill-moded.



We define the notion of free terms to express that a term s is not in a set
of terms T once a substitution σ has been applied. A term s is free in T with
respect to a ground substitution σ if there is no t ∈ T such that (tσ)↓ = (s)↓. A
term which is not free is said to be bound by σ in T . We feel free to omit σ or T
when they are clear from context. Since rewriting by R never overlaps subterm
values, we can prove that normalization and subterm replacement commute.

Lemma 2. Let t be a ground term with all its factors in normal form, and let
s be a ground term in normal form with s 6= (t)↓ and s /∈ Cspe. Then we have
(tδs)↓ = ((t)↓δs)↓.

Example 2. Consider the equational theory E = {f(g(x)) = x}. The only valid
mode functions set either the mode of the argument of f and g to 0 or to 1.
Since there is no critical pairs and the right-hand side is a subterm of the left-
hand side, the rewrite system obtained by unfailing completion is f(g(x))→ x.
Consider now the terms t = f(g(a)) and s = g(a). In both choices of the mode
function, the subterms of t are t, and thus tδs = t. This shows how the notion
of mode permits to define replacements compatible with normalization.

Let s be a normalized ground term with sig(s) = 1 and σ be a ground normal
substitution. Next lemma shows that under the provision that a normalized
term s is free in Sub(t) for a ground substitution σ, the replacement of s in
(tσ)↓ yields the same result as the replacement of s in σ. This will permit to
transfer a pumping argument on instantiated terms to a pumping argument on
substitutions. The proof again relies on the convergence of R.

Lemma 3. Let t be a term, σ be a normalized substitution and s be a ground
term in normal form with sig(s) = 1. Assume s is free in Sub(t) for σ and let
σ′ = (σδs)↓. We have:

((tσ)↓δs)↓ = (tσ′)↓

Example 3. Consider now the equational theory E = {f(x, x) = 0}, the term
t = f(f(x, x), f(x, cmin)) and xσ = a, and consider the replacement δa.
Using the notations of Lemma 3, we have σ′ = {x 7→ cmin}, and thus
tσ′ = f(f(cmin, cmin), f(cmin, cmin)), while on the other hand (tσ)↓δa =
f(0, f(cmin, cmin)) . This example shows even though s is in normal form, an
extra normalization is needed after replacement. Replacing one of the occur-
rence of x by a also shows why we need s to be free in Lemma 3.

3 Intruder deduction systems

We first recall here the general definition of intruder systems, as is given in [8].
Then we define the well-moded intruder in which we are interested in this paper.
In the context of a security protocol (see e.g. [20] for a brief overview), we model
messages as ground terms and intruder deduction rules as rewrite rules on sets
of messages representing the knowledge of an intruder. The intruder derives new
messages from a given (finite) set of messages by applying intruder rules. Since



we assume some equational axioms H are satisfied by the function symbols in
the signature, all these derivations have to be considered modulo the equational
congruence =H generated by these axioms. An intruder deduction rule in our
setting is specified by a term t in some signature G. Given values for the variables
of t the intruder is able to generate the corresponding instance of t.

Definition 1. An intruder system I is given by a triple 〈G,S,H〉 where G is a
signature, S ⊆ T(G,X ) and H is a set of equations between terms in T(G,X ).
To each t ∈ S we associate a deduction rule Lt : Var(t) → t and Lt,g denotes
the set of ground instances of the rule Lt modulo H:

Lt,g = {l→ r | ∃σ, ground substitution on G, l = Var(t)σ and r =H tσ}

The set of rules LI is defined as the union of the sets Lt,g for all t ∈ S.

Each rule l → r in LI defines an intruder deduction relation →l→r between
finite sets of terms. Given two finite sets of terms E and F we define E →l→r F
if and only if l ⊆ E and F = E ∪ {r}. We denote →I the union of the relations
→l→r for all l→ r in LI and by →∗

I the transitive closure of →I . Note that by
definition, given sets of terms E, E′ ,F and F ′ such that E =G E′ and F =G F ′

we have E →I F iff E′ →I F ′. We simply denote by → the relation →I when
there is no ambiguity about I.

Example 4. Let →I× be the relation between ground sets of terms defined by
the Abelian group intruder I× = 〈{×, i, 1}, {x× y, i(x), 1}, E×〉. One has:

a, b, c× a→I× a, b, c, c× a, i(a)→I× a, b, c, c× a, i(a), c

The latter deduction resulting from the application of the rule x, y → x×y with
x instantiated by i(a), y instantiated by c × a, with right-hand side c which is
equal to i(a)× (c× a) modulo the equational theory.

A derivation D of length n, n ≥ 0, is a sequence of steps of the form E0 →I
E0, t1 →I · · · →I En with finite sets of ground terms E0, . . . En, and ground
terms t1, . . . , tn, such that Ei = Ei−1 ∪ {ti} for every i ∈ {1, . . . , n}. The term
tn is called the goal of the derivation. We define E

I
to be equal to the set

{t | ∃F s.t. E →∗
I F and t ∈ F} i.e. the set of terms that can be derived from E.

If there is no ambiguity on the deduction system I we write E instead of E
I
.

With this definition of deduction, one can easily prove that it suffices to
consider deductions on sets of terms in normal form. We will thus only consider
derivations on sets of terms in normal form. From now on we will consider
intruder systems over the signature F0 ∪ F1 modulo the equational theory E =
E0 ∪ E1 as defined in Section 2.1. Let I1 = 〈F ,S, E0 ∪ E1〉 be an intruder system
where terms in S are well-moded.

In the case of a well-moded intruder it is possible to split S into two sets of
well-moded terms S0 and S1 such that for all terms t in Si we have sig(t) = i
for i ∈ {0, 1} and such that S0 contains terms built from symbols of F0. This



permits to extract from I1 a simpler intruder, namely I0 = 〈F0,S0, E0〉. In the
sequel, we will reduce some decision problems on I1 to decision problems on I0
under some adequate hypotheses. We define E →S0 F (resp. E →S1 F , resp.
E →S F ) if E →l→r F with l→ r ∈ Lt,g for t ∈ S0 (resp. S1, resp. S).

Properties of deduction rules. Under the assumption that S is well-moded, one
can prove the following key lemmas. Lemma 4 states that when a term appears
as a new subterm of a knowledge set, it has just been built by the intruder.
Considering a derivation, this will permit to apply Lemma 5 iteratively in order
to show that this term may be eliminated from the derivation. This is the main
step of the proof that terms not appearing as instance subterms of the initial
constraint systems can be replaced by smaller terms (w.r.t. <) in a solution to
yield a smaller solution.

Lemma 4. Assume E and F are in normal form. If E → SF and t ∈ Sub(F ) \
(Sub(E)∪Cspe), then F \E = t and E →Lu F , with u ∈ S and sig(u) = sig(t).

Proof. The hypotheses permit to apply Lemma 1. If the rule is applied with
substitution τ this implies Sub((uτ)↓) ⊆ {(uτ)↓} ∪ Sub(E) ∪ Cspe. Thus t /∈
Sub(E) ∪ Cspe implies t = (uτ)↓ and t /∈ Cspe ∪ Factors(uτ). Thus by Lemma 1
sig(t) = sig(uτ) = sig(u). �

Lemma 5. Assume E, s and t are in normal form, s /∈ (E ∪ Cspe), s 6= t and
cmin ∈ E. Then E, s→ E, s, t implies (Eδs)↓, s→ ((E, t)δs)↓, s.

Locality hypothesis on intruder systems. The previous lemma will be used in
conjunction with an extra hypothesis that is related to the locality property [15].

HYPOTHESIS 1: If E →S1 E, r →S1 E, r, t and r /∈ Sub(E, t) ∪ Cspe then
there is a set of terms F such that E →∗

S0
F →S1 F, t.

Let us define the closure of S1 as the smallest set 〈S1〉 of terms that contains
S1 and such that if s, s′ ∈ S1 and x is a variable of s of mode 1 then s[x← s′] ∈
〈S1〉. By construction the set 〈S1〉 contains only terms with head in F1 and thus
contains only well-moded terms. We can prove that for any set of terms S1 the
set of terms 〈S1〉 satisfies Hypothesis 1.

4 Constraint systems

We introduce now the constraint systems to be solved for checking protocols. It
is shown in [8] how these constraint systems permit to express the reachability
of a state in a protocol execution.

Definition 2. (Unification systems) Let H be a set of equational axioms on
T(G,X ). An H-Unification system S is a finite set of couples of terms in T(G,X )
denoted by {ui

?= vi}i∈{1,...,n}. It is satisfied by a ground substitution σ, and we
note σ |= S, if for all i ∈ {1, . . . , n} we have uiσ =H viσ.



Definition 3. (Constraint systems) Let I = 〈G, S,H〉 be an intruder system.
An I-Constraint system C is denoted: ((Ei B vi)i∈{1,...,n},S) and it is defined
by a sequence of couples (Ei, vi)i∈{1,...,n} with vi ∈ X and Ei ⊆ T(G,X ) for
i ∈ {1, . . . , n}, and Ei−1 ⊆ Ei for i ∈ {2, . . . , n} and by an H-unification system
S.

An I-Constraint system C is satisfied by a ground substitution σ if for all
i ∈ {1, . . . , n} we have viσ ∈ Eiσ and if σ |=H S. If a ground substitution σ
satisfies a constraint system C we denote it by σ |=I C.

Constraint systems are denoted by C and decorations thereof. Note that if a
substitution σ is a solution of a constraint system C, by definition of constraint
and unification systems the substitution (σ)↓O is also a solution of C. In the
context of cryptographic protocols the inclusion Ei−1 ⊆ Ei means that the
knowledge of an intruder does not decrease as the protocol progresses: after
receiving a message a honest agent will respond to it. This response can be
added to the knowledge of an intruder who listens to all communications.

We are not interested in general constraint systems but only in those related
to protocols. In particular we need to express that a message to be sent at some
step i should be built from previously received messages recorded in the variables
vj , j < i, and from the initial knowledge. To this end we define:

Definition 4. (Deterministic Constraint Systems) We say that an I-constraint
system ((Ei B vi)i∈{1,...,n},S) is deterministic if for all i in {1, . . . , n} we have
Var(Ei) ⊆ {v1, . . . , vi−1}

In order to be able to combine solutions of constraints for the intruder the-
ory I1 with solutions of constraint systems for intruders defined on a disjoint
signature we have, as for unification, to introduce some ordering constraints to
be satisfied by the solution. Intuitively, these ordering constraints prevent from
introducing cycle when building a global solution. This motivates us to define
the Ordered Satisfiability problem:

Ordered Satisfiability
Input: an I-constraint system C, X the set of all variables and C the

set of all free constants occurring in C and a linear ordering ≺
on X ∪ C.

Output: Sat iff there exists a substitution σ such that σ |=I C and
for all x ∈ X and c ∈ C, x ≺ c implies c /∈ Subsyn(xσ)

5 Minimal solutions

Let σ be a normal ground substitution and C be a constraint system. We say
that σ is bound in C if, for every s ∈ Sub(Var(C)σ), if sig(s) = 1 then s is bound
by σ in Sub(C). The goal of this section is to prove that whenever a constraint
system C is satisfiable, there exists a normal ground substitution σ bound in C
such that σ |= C. The last key ingredient to this proof is the notion of quasi
well-formed derivations.



Definition 5. A derivation E0 →∗ En and of goal t is quasi well-formed if for
every term u ∈ Sub(En) we have sig(u) = 1 implies u ∈ Sub(E0, t) ∪ Cspe.

Let I=〈F ,S, E〉 be a well-moded intruder that satisfies HYPOTHESIS 1
w.r.t. this mode function.

Lemma 6. Assume cmin ∈ E and E is in normal form. If t ∈ E
S

there exists
a quasi well-formed derivation starting from E of goal t.

Lemma 7. Let E and F be finite sets of normalized terms with cmin ∈ E. Let
s, t be two normalized terms not in Cspe with s ∈ E \ Sub(E), sig(s) = 1 and
t ∈ E ∪ F . We have:

(tδs)↓ ∈ ((E ∪ F )δs)↓
We can now prove that a satisfiable constraint system is satisfied by a bound

solution.

Proposition 1. Let C be a satisfiable constraint system. There exists a normal
bound substitution σ such that σ |= C.

If we denote Sub1(T ) the terms of signature 1 in Sub(T ), this implies the
equality: Sub1((Sub1(C)σ)↓) = (Sub1(C)σ)↓

6 Application to Security Protocols

We present now a decision procedure for the exponentiation operator which
is used e.g. with Diffie-Hellman scheme for the collaborative construction of a
secret key by two principals. We define the union of two intruder systems as the
intruder system having the deduction rules of both intruder systems.

In order to support properties of the exponential operator in cryptographic
protocols analysis our goal is to prove the decidability of ordered satisfiability
for an intruder able to exploit the properties of exponentiations. Note that the
specification of the exponentiation operation is dependent on the specification
of the multiplication, and thus Theorem 1 of [8] cannot be applied directly.

Note also that simple extensions of the theory we consider here would lead to
undecidability of intruder constraints even when they are reduced to equational
unification problems. See [17] for a survey of several exponentiation theories
and their unification problems. The axiomatization we consider here was to our
knowledge first introduced in [21].

Intruder deduction system. We consider the union F of the two signatures
F0 = { · , i( ), 1} and F1 = {exp( , )}. We consider terms in T(F ,X ) modulo
the following equational theory E :

x · (y · z) = (x · y) · z (A)
x · y = y · x (C)
x · 1 = x (U)

x · i(x) = 1 (I)
exp(x, 1) = x (E0)

exp(exp(x, y), z) = exp(x, y · z) (E1)



Modes. One easily checks that for the following mode and signature functions
the theory E is a well-moded theory:

– m(·, 1) = m(·, 2) = m(i, 1) = 0;
– m(exp, 1) = 1 and m(exp, 2) = 0;
– sig(·) = sig(i) = sig(1) = 0
– sig(exp) = 1

According to this definition of mode and signature we define E to be the union
of E0 = {(A), (C), (U), (I)} and E1 = {(E0), (E1)}. The set E0 generates the
theory of a free Abelian group whose generators are the atomic symbols in C.
We denote by R an o-completion of E with the same congruence classes as E
and such that for each term t = exp(t1, t2), if t is in normal form for R then t1
is not an exponential term (i.e. sig(t1) 6= 1) 3.

Let T = {x · y, i(x), 1, exp(x, y)}. We now consider the intruder system
Iexp = 〈F , T, E〉 that represents the modular exponentiation operation as em-
ployed for Diffie-Hellman-like construction of secret keys. According to mode
and signature functions, this permits to define two intruder systems by tak-
ing S0 = {x · y, i(x), 1} and S1 = {exp(x, y)}. Let Iag be the intruder
〈{·, i, 1}, {x · y, i(x), 1}, E0〉. In the rest of this section we present and justify an
algorithm that runs in NP time and permits to reduce ordered satisfiability for
Iexp deterministic constraint systems to ordered satsifiability for Iag determin-
istic constraint systems. Before proceeding further, let us first prove that the
intruder Iexp satisfies HYPOTHESIS 1.

Lemma 8. Let E be a finite set of terms in normal form, and let r, t be two
terms in normal form such that:

E →S1 E, r →S1 E, r, t

If r /∈ Sub(E, t) and E 6→ E, t then there exists a term u such that:

E →S0 E, u→S1 E, u, t

Proof. Assume r /∈ Sub(t) and E 6→ E, t. Since r /∈ Sub(E) it is necessary
an exponential by Lemma 4. Let τ be the substitution with which the second
rule x, y → exp(x, y) is applied. Since E 6→ E, t one must have either r = xτ or
r = yτ .

First let us prove that w.l.o.g. one can assume r 6= yτ . If xτ is not an
exponential, then since E and r are in normal form, so is exp(xτ, yτ), and thus
r ∈ Sub(t), which contradicts the hypothesis. If xτ is an exponential, say xτ =
exp(x1τ, y1τ), then:

exp(xτ, r) =E t′ = exp(x1τ, y1τ × r)

By convergence of R we have (t′)↓ = t. Since either xτ ∈ E or r = xτ , the
assumption r /∈ Sub(E) implies that r is not a strict subterm of xτ , and thus
3 such a system R can be obtained by o-completion with a suitable ordering



r /∈ Sub(x1τ, y1τ). Since the factors of t′ are in normal form and r 6= t, we have
(t′δr)↓ = (tδr)↓, and thus r /∈ Sub(t) implies (t′δr)↓ = t. In turn, this implies
that xτ, cmin → t is ground instance of a rule in S1 that can be applied on E, r
to deduce t.

The claim and E 6→ t implies xτ = r and yτ 6= r and thus yτ ∈ E. It suffices
now to consider the ground instance s1, s2 → (exp(s1, s2))↓ = r of the rule that
permits to deduce r from E. Since s1, s2 ∈ E we have the following derivation:

E → S0E, s2 × yτ →S1 E, s2 × yτ, (exp(s1, s2 × yτ))↓

The equality E2 implies that this last term is equal to t. �

As a consequence the exponential intruder enjoys quasi well-formed deriva-
tions and by Proposition 1, a satisfiable constraint system can be satisfied by a
bound substitution. Thus we can bound the number of exponential subterms in
quasi well-formed derivations. We can therefore design a correct, complete and
terminating algorithm for solving the Iexp-constraints.

Properties of bound solutions Let C = ((Ei B vi)1≤i≤n,S) be a con-
straint system and σ be a solution of C. Given t ∈ Sub(C) let us define
It = {j | (tσ)↓ ∈ Sub((Sub(Ej)σ)↓, vjσ)}. If It 6= ∅ we say that the term t is
deduction-bound. In this case we define the indice of t, and denote it, the min-
imum indice in It. If t ∈ Sub(C) is deduction bound, we say it is past-bound if
t ∈ Sub((Sub(Ejt)σ)↓) and past-free otherwise. Finally, given a past-bound term
t of indice it, we say that a term m is a complete prefix of t if:

1. sig(m) = sig((tσ)↓) and (mσ)↓ = (tσ)↓;
2. For all factor u of m; either (uσ)↓ is past-free or sig(u) = sig((uσ)↓)
3. Var(m) ⊆ {v1, . . . , vit}

Lemma 9. It is possible to compute a complete prefix of (tσ)↓ for all past-bound
terms t in Sub(C).

Algorithm We present here a decision procedure for the exponential intruder
Iexp that takes as input a constraint system C = ((Ei Bvi)1≤i≤n,S) and a linear
ordering <i on variables and constants of C. Let m = |Sub(C)| be the number of
subterms in C.

Step 1: Choose m triples (ei, xi, yi)i∈{1,...,m} of new variables and m2 variables

{yi,j}i,j∈{1,...,m}. Add to S equations ei
?= exp(xi, yi) for i ∈ {1, . . . ,m} and

yi ·yi,j
?= yj for i, j ∈ {1, . . . ,m}. Let Se be the obtained unification problem

and Xe be the set of these new variables.
Step 2: Choose an equivalence ≡σ relation among subterms of C and Se. Let

Q = {q1, . . . , qn} be a set of new variables each denoting an equivalence
class. Add to Se the equation t

?= q for each t ∈ q for each equivalence class
q ∈ Q. Let S ′′ be the obtained constraint system. Choose a subterm relation
on Q.



Step 3: Guess a subset of Qd of Q, and let L = Q ∪ {v1, . . . , vn} and let L =
{l1, . . . , lk}. Let < be a total order on L such that i < j implies vi < vj and
form the constraint system C′ = ((Fi B li)1≤i≤k,S ′′) with F1 = E1

Fi+1 = Fi ∪ (Ej+1 \ Ej) If li = vj

Fi+1 = Fi, li Otherwise

Step 4: Replace each past-bound term in C’ with a complete prefix and past-
free terms with the representative q of their equivalence class. Reduce with
equation (E1) to form the constraint system C′′.

Step 5: Guess which constraints EBv in C′′ must be solved by derivations ending
with a rule in S1, and reduce them (if possible) to constraints to solve with
S0

Step 6: Reduce S ′′ to a system of general unification modulo E0 according to
algorithm employed in [21], p. 7, proof of main theorem and purify the
deduction constraints.

Step 7: Solve the resulting Iag deterministic intruder system with the linear
constant restriction <i.

Comments on the algorithm. We assume in the following that the ordered
satisfiability problem (C, <i) is satisfied by a ground substitution σ0.

Step 1: If C is satisfiable, it is satisfied by a bound substitution for which there
are less than m different exponential terms. The yi,j will denote the expo-
nents that we have to build so that exp(ei, yi,j) = ej .

Step 2: The subterm relation and the equivalence classes are needed to compute
past-free and past-bound terms.

Step 3: The construction amounts to concatenating all derivations from (Eiσ)↓
of goal viσ into one derivation that has to deduce the terms viσ at some
point and in which in some steps the set of term is arbitrarily extended (case
li = vj). From this pseudo-derivation we extract in turn all applications of
the S1 rule and all applications of the S0 rule that yield a past-free term.
The first one permits a complete reduction at next step of the algorithm,
while the second one permits to ensure that the resulting constraint system
is determinitic once past-free terms are replaced by variables. The rational
for this is that by definition the normal form q of a past-free term will be
deduced (i.e. appear in a constraint F B q) before a term in this equivalence
class (that will be replaced by the variable q) appears in any knowledge set.

Step 4: Note here that if a S1 rule permits to deduce a non-exponential term
q, this term is past-bound. Thus the replacement made at previous step
permits to ensure that q will never appear again in the deduction part of the
constraint system, and thus that erasing this constraint during the reduction
will not turn the constraint system into a non-deterministic one. If a S1 rule
permits to deduce an exponential term, it will be seen as a constant when
solving the resulting constraint system w.r.t. the Iag intruder. It is thus safe
to erase the constraint in this case.



Step 5: In [21] unification systems with constants modulo E are reduced to gen-
eral unification systems modulo E0 containing the exp as a free binary sym-
bol. We go one step further and turn this unification system into a unifica-
tion system with linear constant restrictions but without non-constant free
symbols in order to syntactically eliminate the exp symbol. The deduction
constraints are purified by replacing all equivalence classes of exponential
terms by a representative constant.

As a consequence of this algorithm we have a decidability result for ordered
satisfiability w.r.t. exponential intruder.

Proposition 2. The ordered satisfiability problem for deterministic constraints
and intruder Iexp is decidable (with complexity NP).

7 Conclusion

We have introduced a combination scheme for intruder theories that extends
disjoint combination. We have shown how it can be used to derive new decid-
ability results for security protocols. The scheme relies on an extension of the
notion of locality. Unfortunately it does not apply to homomorphism properties
(handled in a specific way in [18]) because they are ill-moded by nature and more
investigations are needed to see whether it can be extended in this direction.
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